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✴  Electroweak theory  (without SU(3) color int.)

• a chiral gauge theory with SU(2)L x U(1)Y 

• gauge symmetry breaking via Higgs mechanism 

• baryon number violation due to chiral anomaly   

• etc. 

with LGT,  what one can do to study these 
aspects of the electroweak theory ?



✴ a gauge-invariant construction of ElectroWeak theory 
★ use of DW,  Overlap (the Ginsparg-Wilson relation)

cf.  U(1) lattice chiral gauge theory with exact gauge invariance

✴ possible applications of the lattice EW theory

★ a computation of the effect of quarks, leptons to the sphaleron rate

★ a construction of a model of dynamical EW symmetry breaking

★  etc.

Plan of this talk



chiral fermion bound to 
Domain wall “Wilson” fermion

Kaplan(1992) 

Weyl fermions (quarks & leptons) on the lattice
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Kaplan’s Domain wall fermion

• Five-dimensional Dirac fermion coupled to a scalar field condensate
with kink-like topological defect Callan-Harvey

{γµDµ + γ5D5 + 〈φ(x5)〉} ψ(x, x5) = 0, 〈φ(x5)〉 = m0ε(x5)

• Chiral zero mode bounded to the domain wall at x5 = 0

D†D = · · · − γ5m0δ(x5) =⇒ ψR(x) e−m0|x5|
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• can be implemented on the lattice with the Wilson term Kaplan
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overlap Dirac op. / the GW rel.

Neuberger(1997,98) 
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Luscher; Hasenfratz, Niedermayer(1998) 
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on gauge fields !!
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* different situation from Dirac fermions in Vector-like theories,  like QCD

1.

2.

3.

gauge invariance ?

integrability ? topology of the space of gauge fields

locality ?

non-trivial due to Admissibility cond.

variation of effective action & gauge anomaly

δηΓeff = Tr
{

(δηD)P̂
−

D−1P+

}

+
∑

i

(vi, δηvi)

= iTrωγ5 (1 − D) − i
∑

i

(vi, δωvi) ηµ(x) = −i∇µω(x)

gauge anomaly!

δηU(x, µ) = iηµ(x)U(x, µ)Γeff = ln det(v̄kDvj)

Luscher(98) 

(cf. Hernandez, Jansen, Luscher(98) )

the gauge-field dependence must be fixed ...
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Construction of SU(2)xU(1) Electroweak theory (I)

infinite volume case
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ηµ(x) = η
(2)
µ (x) ⊕ η

(1)
µ (x) Ut(x, µ)(1) = eitAµ(x) t ∈ [0, 1]
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Luscher(98)   
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cf.  U(1) case   



• a local counter term constructed non-perturbatively 

• the first gauge-invariant regularization of EW theory

(cf. dimensional reg. )

• may be used in the perturbation theory  

ex.  for computations of higher order EW contr.  to g-2 (?)

Construction of SU(2)xU(1) Electroweak theory (I)

infinite lattice case



Construction of SU(2)xU(1) Electroweak theory (II)

Neuberger(01)   



Construction of SU(2)xU(1) Electroweak theory (II)
finite volume case

Γ4 = {x = (x0, · · · , x3) ∈ Z
4 | 0 ≤ xµ < L} = L

4

Neuberger(01)   
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SU(2)

 U(1) ~ T^n

! Global SU(2) anomaly (single SU(2) doublet)
O. Bär and I. Campos, Nucl. Phys. B581, 499 (2000)

T
n[U(1)] × M [SU(2)]

Uµ(x) = eiAT
µ (x)g(x)g(x + µ̂)−1U[w](x, µ)V[m](x, µ)

Fµν(x) = ∂µA
T
ν (x) − ∂νA

T
µ (x) +

2πmµν

L2

Neuberger(01)   
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v
(b)
j (x) =

(

γ5C
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⊗ iσ2

)

[vj(x)]∗

v
(a)
j (x) = vj(x)

a pair of doublets (a,b) measure defined 
globally !

cf.  Nuberger(98)  Bar-Campos (00)  

Neuberger(01)   
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Fµν(x) = ∂µA
T
ν (x) − ∂νA

T
µ (x) +

2πmµν

L2

v
(b)
j (x) =

(

γ5C
−1

⊗ iσ2

)

[vj(x)]∗

v
(a)
j (x) = vj(x)

a pair of doublets (a,b) measure defined 
globally !

cf.  Nuberger(98)  Bar-Campos (00)  

Neuberger(01)   
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t (x, µ) = eitÃµ(x) U[w](x, µ) t ∈ [0, 1] (mµν = 0)

Kadoh-YK in prep. cf.  Luscher(98)   

= i

∫ 1

0

dt Tr
{

P̂
−

[∂tP̂−
, δηP̂

−
]
}

+δη

∫ 1

0

dt
∑

x∈Γ4

{
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=
∑

α

Yαq(x)|U(2) +
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α

Y 3

α

1

32π2
εµνλρFµν(x)Fλρ(x + µ̂ + ν̂) + ∂∗

µkµ(x)

= ∂
∗

µkµ(x)

∑

L

Y
3
−

∑
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Y
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∑

doublet(L)
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!a
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U(1)
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SU(2)

SU(2)Y

Suzuki et al. (01) Kadoh-Nakayama-YK(04)

local counter term! Wilson line contr.

gauge anomaly cancellation

q(x) = tr {γ5(1 − aD)(x, x)}|U(1),U(2)

cohomological analysis in Γ4 x ∈ Γ4



• covers all SU(2) topological sectors with vanishing U(1) 
magnetic fluxes

• global integrability can be proved rigorously

even number of SU(2) doublets,  U(1) Wilson line parts

• explicit with two simplifications    cf.  U(1),  Luscher (98)

★ direct proof of gauge anomaly cancellation in

★  separate treatment of the Wilson line

• some non-perturbative applications ?

Construction of SU(2)xU(1) Electroweak theory (II)
finite volume case

L
4

based on :
Y.~Nakayama and Y.K., Nucl. Phys. B597, 519  (2001)
D.~Kadoh, Y.~Nakayama and Y.K., JHEP 0412, 006 (2004) 
D.~Kadoh and Y.K.,  in preparation
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288 M. Garcfa Pdrez, P van Baal/Nuclear Physics B 468 (1996) 277-292 

(b) (e) 

lO~~y i 0 ~  

x x (a) (b) (C) 

Fig. I. The scalar field (top) and the energy density (bottom) in a plane through the centre of the electroweak 

sphalerons for (a) MH = oo at MwL = 2.53, (b) MH = Mw and (c) MH = 3Mw, both at MwL = 4.0. 

The energy density is normalized to its peak value (0.093, 0.025 and O.Ol6M4/aw, respectively) and the 

scalar field p to its expectation value v ( (b)  Pmin/V = 0.238 and pmax/V = 0.908, (c) Pmin/V = 0.165 and 

pmax/V = 0.718 ). 

positive, with almost identical energies.) Initially, a negative value for the trace of  one 

of the links mislead us to believe that we were dealing with dislocations. 

Putting all constraints in we found for MH = c~ the window of allowed values to be 

MwL ~ 2.5, aMw <~ 0.40, for MH = Mw the window is MwL >~ 3.8, aMw <<. 0.60 

and for M H  = 3 Mw it is MwL >~ 4.0, aMw <. 0.65. 

Fig. 1 gives the energy density profiles of the electroweak sphaleron at each of the 

three Higgs masses. We should not directly use Eq. (2),  but first average over all 

directions of the links connected to a point x (without affecting the total energy), in 

order to compute the energy density at this point. Note that for MH = cx~ the solution 

is very much more peaked in the core region and will have larger lattice artefacts. The 

behaviour in the tail region is similar to the case where Mw = MH. For MH = 3Mw 

this tail region is dominated by the decay of the scalar field. Also plotted in Fig. 1 

is the behaviour of p ( x ) / v  for MH = Mw and MH = 3Mw at MwL = 4. Because 

of finite volume effects the scalar field does not exactly equal its expectation value at 

the boundary. Likewise it does not quite go to zero at the centre, which is also due to 

finite lattice spacing errors. To be precise we find for MH = Mw, Pmin = 0.238v and 

3 M Pmax = 0.908v, whereas for MH = ~ w, Pmin = 0.165v and Pmax = 0.718v, see Fig. 1. 

The way we obtained the required configurations was by first constructing a sphaleron 

for the frozen-length Higgs model, starting at N = 8. All links at the boundary were first 

put to the identity, which serves the purpose of positioning the solution in the centre 

of the lattice and of lifting the energy of the finite volume sphaleron by a considerable 

amount. The latter helps avoid getting trapped in that solution. Centering the energy 

profile will reduce the probability of getting stuck in a saddle point with spurious 

unstable modes due to the breakdown of translational and rotational invariance. We then 

release the frozen boundary condition and compute the Hessian after cooling to verify 

that we have one unstable mode only. This way the maximal energy density occurs at the 

U (2)
µ (x), U (1)

µ (x), φ(x) (x ∈ L
3)

saddle point cooling
Perez- van Baal (96)
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µ (x), U (1)

µ (x), φ(x) (x ∈ L
3)

saddle point cooling
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cf. Moore (96)

fermion fluctuation det.

• sum over matsubara freq.

• one-loop renormarizations

• dependence on the Higgs, 
Yukawa coupling 

• comparison to other methods

cf. Bodeker et. (00)

Mt =

(

(v̄kDvj) yt(v̄kφ̃uj)
yt(ūkφ̃†vj) (ūkDuj)

)

κF (v, λ, yt, · · · ) ≡
∏

q,l

∏

ωn

detM/ detM0
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if gY=0, numerical 
simulation is possible !

*global issue; Neuberger(98), Bar(02)



• almost conformal;  “walking coupling”

• chiral symmetry breaking 

SU(4) ---> O(4)

• consistent with the (usually severe) 
constraints from EW precision measurements

 

• Light composite Higgs scalar 

MH ~ 150 GeV

properties claimed Sannino et al. 

Check needed by a non-perturbative method

Here Ci ! 1; 2 is the technicolor index and TL"R# is a
doublet (singlet) with respect to the weak interactions.
The two-index symmetric representation of SU"2# is real,
and hence the global classical symmetry group is SU"4#
which breaks to O"4#. This leads to the appearance of nine
Goldstone bosons, of which three become the longitudinal
components of the weak gauge bosons. The low-energy
spectrum is expected to contain six quasi-Goldstone bo-
sons which receive mass through extended technicolor
interactions [14,15,47–52].

As pointed out in [16], the weak interactions are also
affected by the SU"2# Witten anomaly [53]. More specifi-
cally, since our techniquarks are in the two-index symmet-
ric representation of SU"2# we have exactly three extra left
doublets from the point of view of the weak interactions.
There can be different resolutions of this problem and all of
them lead to new and interesting physical consequences
observable at LHC. A simple way to cure such an anomaly
without introducing further unwanted gauge anomalies is
to introduce at least one new lepton family. According to
the choice of the hypercharge we discuss a number of
relevant cases:

A. New standard model like lepton family

Since we have three doublets of techniquarks which
resemble very much an ordinary triplet of colored quarks
one can assign to the techniquarks the standard quark
hypercharge which for the left-handed technifermions is

then:

Y ! $1=6: (4)

The hypercharge is linked to the ordinary charge following
the convention:

Q ! T3 $ Y: (5)

This yields:

T"Q#
L !

!
U"$2=3#

D"%1=3#

"

L
(6)

where we have provided the electric charges of the techni-
quarks and suppressed the technicolor indices. For the
right-handed technifermions which are isospin singlets
we have:

T"Q#
R ! "U"$2=3#

R ;D"%1=3#
R # Y ! $2=3;%1=3: (7)

In this case it is sufficient to add one new generation of left-
handed leptons with hypercharge Y ! %1=2:

L "Q#
L !

!
!"0#
"

" "%1#

"

L
: (8)

Clearly this new lepton family must be sufficiently heavy
and not at odds with the electroweak precision measure-
ments. We will consider three possible scenarios: The one
in which the neutral and charged lepton have a Dirac mass.
In the second we have a Majorana mass for the neutrino

Λ =TC ΛETC

α

q

non-conformal

ΛTC

α

qΛETC

Λ 1000ETC - ΛTC

near-conformal

α

β
α*αc

FIG. 2. Left panel: A standard running behavior of a coupling constant in a generic asymptotically free theory. Right panel: The
walking behavior of the coupling constant when the number of flavors is near a conformal fixed point. The associated beta function is
plotted below the previous graph.
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experimental review papers, a specific reason for this
change.4

Even though it can be considered as a conservative
estimate, already the perturbative assessment of the
oblique parameters in our theories shows a considerable
overlap with the data [see Figs. 1(a) and 2(a)]. In nearly
conformal theories like ours the contribution of the tech-

niquarks is further reduced by nonperturbative effects
[17,18]. This reduction is of the order of 20% [18]. In the
case of the integerly charged leptons (III), the nonpertur-
bative contributions do not change the characteristics of the
results (see Fig. 2). The same holds for the fractionally
charged leptons (II). No dedicated plot has been devoted to
that case because it corresponds to a vertical line exactly in
the opening of the area shaded in black in the other plots.
Put differently, the black area is contracted to zero width in
the direction of S. The situation is slightly different for the
standard-model-like charges, where an additional overlap
with the right branch of the black area is achieved. This

0 +0.5-0.5
-0.5

+0.5

0

T

S

(a) Perturbat ive

0 +0.5-0.5
-0.5

+0.5

0

T

S

(b) Non-perturbat ive

FIG. 2 (color online). Leptons with integer charges. Left Panel: The parabolic area shaded in black corresponds to the accessible
range for S and T with the masses of the extra neutrino and extra electron taken from mZ to 10mZ. The perturbative estimate for the
contribution to S from techniquarks equals 1=2!. The three staggered ellipses are the 90% confidence level contours for the former
global fit to the electroweak precision data [5] with U kept at 0. The values of U in our model lie typically between 0 and 0.05 whence
they are consistent with these contours. These contours from bottom to top are for Higgs masses of mH ! 117, 340, 1000 GeV,
respectively. The smaller ellipse to the upper right is the 68% confidence level contour for the new global fit to electroweak precision
data [13] with U ! 0 and for a Higgs mH ! 150 GeV as predicted for our model. Right Panel: With nonperturbative corrections to the
S parameter taken into account in the technicolor sector of the theory.
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FIG. 1 (color online). Standard model–like charge assignment. Left Panel: The area shaded in black corresponds to the accessible
range for S and T with the masses of the extra neutrino and extra electron taken from mZ to 10mZ. The perturbative estimate for the
contribution to S from techniquarks equals 1=2!. The three staggered ellipses are the 90% confidence level contours for the former
global fit to the electroweak precision data [5] with U kept at 0. The values of U in our model lie typically between 0 and 0.05 whence
they are consistent with these contours. These contours from bottom to top are for Higgs masses of mH ! 117, 340, 1000 GeV,
respectively. The smaller ellipse to the upper right is the 68% confidence level contour for the new global fit to electroweak precision
data [13] with U ! 0 and for a Higgs mH ! 150 GeV as predicted for our model. Right Panel: With nonperturbative corrections to the
S parameter taken into account in the technicolor sector of the theory.

4It is, however, clear that the NuTeV data are not included in
the analysis of [13]. The implications of the NuTeV data are still
under active discussion, see e.g. [16] and it would certainly be
very interesting to investigate their effects in the future.
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• almost conformal;  “walking coupling”

• chiral symmetry breaking 

SU(4) ---> O(4)

• consistent with the (usually severe) 
constraints from EW precision measurements

 

• Light composite Higgs scalar 

MH ~ 150 GeV

properties claimed

These are the problems familiar in lattice QCD, 
although tough

Sannino et al. 

Check needed by a non-perturbative method

Here Ci ! 1; 2 is the technicolor index and TL"R# is a
doublet (singlet) with respect to the weak interactions.
The two-index symmetric representation of SU"2# is real,
and hence the global classical symmetry group is SU"4#
which breaks to O"4#. This leads to the appearance of nine
Goldstone bosons, of which three become the longitudinal
components of the weak gauge bosons. The low-energy
spectrum is expected to contain six quasi-Goldstone bo-
sons which receive mass through extended technicolor
interactions [14,15,47–52].

As pointed out in [16], the weak interactions are also
affected by the SU"2# Witten anomaly [53]. More specifi-
cally, since our techniquarks are in the two-index symmet-
ric representation of SU"2# we have exactly three extra left
doublets from the point of view of the weak interactions.
There can be different resolutions of this problem and all of
them lead to new and interesting physical consequences
observable at LHC. A simple way to cure such an anomaly
without introducing further unwanted gauge anomalies is
to introduce at least one new lepton family. According to
the choice of the hypercharge we discuss a number of
relevant cases:

A. New standard model like lepton family

Since we have three doublets of techniquarks which
resemble very much an ordinary triplet of colored quarks
one can assign to the techniquarks the standard quark
hypercharge which for the left-handed technifermions is

then:

Y ! $1=6: (4)

The hypercharge is linked to the ordinary charge following
the convention:

Q ! T3 $ Y: (5)

This yields:

T"Q#
L !

!
U"$2=3#

D"%1=3#

"

L
(6)

where we have provided the electric charges of the techni-
quarks and suppressed the technicolor indices. For the
right-handed technifermions which are isospin singlets
we have:

T"Q#
R ! "U"$2=3#

R ;D"%1=3#
R # Y ! $2=3;%1=3: (7)

In this case it is sufficient to add one new generation of left-
handed leptons with hypercharge Y ! %1=2:

L "Q#
L !

!
!"0#
"

" "%1#

"

L
: (8)

Clearly this new lepton family must be sufficiently heavy
and not at odds with the electroweak precision measure-
ments. We will consider three possible scenarios: The one
in which the neutral and charged lepton have a Dirac mass.
In the second we have a Majorana mass for the neutrino
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β
α*αc

FIG. 2. Left panel: A standard running behavior of a coupling constant in a generic asymptotically free theory. Right panel: The
walking behavior of the coupling constant when the number of flavors is near a conformal fixed point. The associated beta function is
plotted below the previous graph.
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in which the neutral and charged lepton have a Dirac mass.
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experimental review papers, a specific reason for this
change.4

Even though it can be considered as a conservative
estimate, already the perturbative assessment of the
oblique parameters in our theories shows a considerable
overlap with the data [see Figs. 1(a) and 2(a)]. In nearly
conformal theories like ours the contribution of the tech-

niquarks is further reduced by nonperturbative effects
[17,18]. This reduction is of the order of 20% [18]. In the
case of the integerly charged leptons (III), the nonpertur-
bative contributions do not change the characteristics of the
results (see Fig. 2). The same holds for the fractionally
charged leptons (II). No dedicated plot has been devoted to
that case because it corresponds to a vertical line exactly in
the opening of the area shaded in black in the other plots.
Put differently, the black area is contracted to zero width in
the direction of S. The situation is slightly different for the
standard-model-like charges, where an additional overlap
with the right branch of the black area is achieved. This
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FIG. 2 (color online). Leptons with integer charges. Left Panel: The parabolic area shaded in black corresponds to the accessible
range for S and T with the masses of the extra neutrino and extra electron taken from mZ to 10mZ. The perturbative estimate for the
contribution to S from techniquarks equals 1=2!. The three staggered ellipses are the 90% confidence level contours for the former
global fit to the electroweak precision data [5] with U kept at 0. The values of U in our model lie typically between 0 and 0.05 whence
they are consistent with these contours. These contours from bottom to top are for Higgs masses of mH ! 117, 340, 1000 GeV,
respectively. The smaller ellipse to the upper right is the 68% confidence level contour for the new global fit to electroweak precision
data [13] with U ! 0 and for a Higgs mH ! 150 GeV as predicted for our model. Right Panel: With nonperturbative corrections to the
S parameter taken into account in the technicolor sector of the theory.
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FIG. 1 (color online). Standard model–like charge assignment. Left Panel: The area shaded in black corresponds to the accessible
range for S and T with the masses of the extra neutrino and extra electron taken from mZ to 10mZ. The perturbative estimate for the
contribution to S from techniquarks equals 1=2!. The three staggered ellipses are the 90% confidence level contours for the former
global fit to the electroweak precision data [5] with U kept at 0. The values of U in our model lie typically between 0 and 0.05 whence
they are consistent with these contours. These contours from bottom to top are for Higgs masses of mH ! 117, 340, 1000 GeV,
respectively. The smaller ellipse to the upper right is the 68% confidence level contour for the new global fit to electroweak precision
data [13] with U ! 0 and for a Higgs mH ! 150 GeV as predicted for our model. Right Panel: With nonperturbative corrections to the
S parameter taken into account in the technicolor sector of the theory.

4It is, however, clear that the NuTeV data are not included in
the analysis of [13]. The implications of the NuTeV data are still
under active discussion, see e.g. [16] and it would certainly be
very interesting to investigate their effects in the future.
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Here Ci ! 1; 2 is the technicolor index and TL"R# is a
doublet (singlet) with respect to the weak interactions.
The two-index symmetric representation of SU"2# is real,
and hence the global classical symmetry group is SU"4#
which breaks to O"4#. This leads to the appearance of nine
Goldstone bosons, of which three become the longitudinal
components of the weak gauge bosons. The low-energy
spectrum is expected to contain six quasi-Goldstone bo-
sons which receive mass through extended technicolor
interactions [14,15,47–52].

As pointed out in [16], the weak interactions are also
affected by the SU"2# Witten anomaly [53]. More specifi-
cally, since our techniquarks are in the two-index symmet-
ric representation of SU"2# we have exactly three extra left
doublets from the point of view of the weak interactions.
There can be different resolutions of this problem and all of
them lead to new and interesting physical consequences
observable at LHC. A simple way to cure such an anomaly
without introducing further unwanted gauge anomalies is
to introduce at least one new lepton family. According to
the choice of the hypercharge we discuss a number of
relevant cases:

A. New standard model like lepton family

Since we have three doublets of techniquarks which
resemble very much an ordinary triplet of colored quarks
one can assign to the techniquarks the standard quark
hypercharge which for the left-handed technifermions is

then:

Y ! $1=6: (4)

The hypercharge is linked to the ordinary charge following
the convention:

Q ! T3 $ Y: (5)

This yields:

T"Q#
L !
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U"$2=3#

D"%1=3#

"

L
(6)

where we have provided the electric charges of the techni-
quarks and suppressed the technicolor indices. For the
right-handed technifermions which are isospin singlets
we have:

T"Q#
R ! "U"$2=3#

R ;D"%1=3#
R # Y ! $2=3;%1=3: (7)

In this case it is sufficient to add one new generation of left-
handed leptons with hypercharge Y ! %1=2:

L "Q#
L !

!
!"0#
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" "%1#
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L
: (8)

Clearly this new lepton family must be sufficiently heavy
and not at odds with the electroweak precision measure-
ments. We will consider three possible scenarios: The one
in which the neutral and charged lepton have a Dirac mass.
In the second we have a Majorana mass for the neutrino
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FIG. 2. Left panel: A standard running behavior of a coupling constant in a generic asymptotically free theory. Right panel: The
walking behavior of the coupling constant when the number of flavors is near a conformal fixed point. The associated beta function is
plotted below the previous graph.
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Here Ci ! 1; 2 is the technicolor index and TL"R# is a
doublet (singlet) with respect to the weak interactions.
The two-index symmetric representation of SU"2# is real,
and hence the global classical symmetry group is SU"4#
which breaks to O"4#. This leads to the appearance of nine
Goldstone bosons, of which three become the longitudinal
components of the weak gauge bosons. The low-energy
spectrum is expected to contain six quasi-Goldstone bo-
sons which receive mass through extended technicolor
interactions [14,15,47–52].

As pointed out in [16], the weak interactions are also
affected by the SU"2# Witten anomaly [53]. More specifi-
cally, since our techniquarks are in the two-index symmet-
ric representation of SU"2# we have exactly three extra left
doublets from the point of view of the weak interactions.
There can be different resolutions of this problem and all of
them lead to new and interesting physical consequences
observable at LHC. A simple way to cure such an anomaly
without introducing further unwanted gauge anomalies is
to introduce at least one new lepton family. According to
the choice of the hypercharge we discuss a number of
relevant cases:

A. New standard model like lepton family

Since we have three doublets of techniquarks which
resemble very much an ordinary triplet of colored quarks
one can assign to the techniquarks the standard quark
hypercharge which for the left-handed technifermions is

then:
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the convention:
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right-handed technifermions which are isospin singlets
we have:
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In this case it is sufficient to add one new generation of left-
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L "Q#
L !

!
!"0#
"

" "%1#

"

L
: (8)

Clearly this new lepton family must be sufficiently heavy
and not at odds with the electroweak precision measure-
ments. We will consider three possible scenarios: The one
in which the neutral and charged lepton have a Dirac mass.
In the second we have a Majorana mass for the neutrino
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experimental review papers, a specific reason for this
change.4

Even though it can be considered as a conservative
estimate, already the perturbative assessment of the
oblique parameters in our theories shows a considerable
overlap with the data [see Figs. 1(a) and 2(a)]. In nearly
conformal theories like ours the contribution of the tech-

niquarks is further reduced by nonperturbative effects
[17,18]. This reduction is of the order of 20% [18]. In the
case of the integerly charged leptons (III), the nonpertur-
bative contributions do not change the characteristics of the
results (see Fig. 2). The same holds for the fractionally
charged leptons (II). No dedicated plot has been devoted to
that case because it corresponds to a vertical line exactly in
the opening of the area shaded in black in the other plots.
Put differently, the black area is contracted to zero width in
the direction of S. The situation is slightly different for the
standard-model-like charges, where an additional overlap
with the right branch of the black area is achieved. This
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FIG. 2 (color online). Leptons with integer charges. Left Panel: The parabolic area shaded in black corresponds to the accessible
range for S and T with the masses of the extra neutrino and extra electron taken from mZ to 10mZ. The perturbative estimate for the
contribution to S from techniquarks equals 1=2!. The three staggered ellipses are the 90% confidence level contours for the former
global fit to the electroweak precision data [5] with U kept at 0. The values of U in our model lie typically between 0 and 0.05 whence
they are consistent with these contours. These contours from bottom to top are for Higgs masses of mH ! 117, 340, 1000 GeV,
respectively. The smaller ellipse to the upper right is the 68% confidence level contour for the new global fit to electroweak precision
data [13] with U ! 0 and for a Higgs mH ! 150 GeV as predicted for our model. Right Panel: With nonperturbative corrections to the
S parameter taken into account in the technicolor sector of the theory.
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FIG. 1 (color online). Standard model–like charge assignment. Left Panel: The area shaded in black corresponds to the accessible
range for S and T with the masses of the extra neutrino and extra electron taken from mZ to 10mZ. The perturbative estimate for the
contribution to S from techniquarks equals 1=2!. The three staggered ellipses are the 90% confidence level contours for the former
global fit to the electroweak precision data [5] with U kept at 0. The values of U in our model lie typically between 0 and 0.05 whence
they are consistent with these contours. These contours from bottom to top are for Higgs masses of mH ! 117, 340, 1000 GeV,
respectively. The smaller ellipse to the upper right is the 68% confidence level contour for the new global fit to electroweak precision
data [13] with U ! 0 and for a Higgs mH ! 150 GeV as predicted for our model. Right Panel: With nonperturbative corrections to the
S parameter taken into account in the technicolor sector of the theory.

4It is, however, clear that the NuTeV data are not included in
the analysis of [13]. The implications of the NuTeV data are still
under active discussion, see e.g. [16] and it would certainly be
very interesting to investigate their effects in the future.
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O(p4) low energy coupling L10

spectrum; neutral scalar, rho, ...  

the order of finite temp. rest.

matching to CRMT Σ Fπ

cf.  Toublan-Vervaarshot (99)



I hope  it is not ...

“E ni Kaita Mochi”  in japanese

rice cake in a picture

What is the sound of 
one hand clapping?


